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Outline

» Current technology landscape and future growth directions

*¢* 3D device structures from FinFET to nanosheet architectures
and beyond Silicon

¢ 3D heterogeneous integration: chiplets and neuromorphic
computing

¢ Electrical car driven SiC market explosion



From Inetrnet of Things to Internet of Everything
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Infrastructure Requirements

& -3 A
L 3 3 " et L "
) w - ¥ 4 ¢
Wl Lo sy T

Zold. |
AR ot
R

SMARTER CLIENT Al & ANALYTICS 5G & COMMS
DEVICES & EDGE EVERYWHERE INFRASTRUCTURE

S | B | S R RN AR,

ADAPTABLE & GAMING, CLOUD, NETWORK,
INTELLIGENT SIMULATION & HYPERSCALE &
SYSTEMS VISUALIZATION SUPERCOMPUTER

> Data Availability/Connectivity (5G/6G)

> Artificial Intelligence Algorithms

» Computing Power and Massive Data Storage

» Data Analytics

> Intelligent System Implementation (cars, cities,...)

Source: M.Mayberry, Intel, VLSI 2020



Artificial Intelligence Methods

» Machine Learning — Without Human Intervention

» Deep Learning — Deployment of neural networks on huge data
sets

» Generative Al — Creation of new data, text, audio, video. Text is
generated in natural language using Large Language Models (LLM)

» ChatGPT — Most popular system nowadays. Can answer any
questions, pass any exam, write a poem, compose a song, create
an impressive painting, etc.

But... What are the computing and storage needs to train such a
system?




Training Needs of the Large Language Models

Language Model Training

T-NLG
Megatron

39 76 145 530 1,008
Billions of Parameters

Exponentially growing model sizes driving massive growth in compute and memory

Source: L. Su AMD, ISSCC 2023



Artificial Intelligence Evolution

Super Intelligence
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intelligence

Generality
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Machine trans[ations.
0.01x

. Image classification
0.001x

Constrained world
0.0001x Fixed function ' Chess

0.06x 0.13x 0.25x 0.5x 1x 2% 4ax 8x  Performance
How do we approach human brain capabilities?
» So far successes only for the application specific systems (robotics, image classification,
chess,...
» Achieved with huge compute and storage resources with huge energy consumption
» Human brain: almost 100 billion neurons, up to 1,000 trillion synapses, but...
» Power consumption below 20 W

Source: R. Koduri, Intel, Hot Chips 2020



Evolution of Market Drivers: Data Explosion

Data is Exploding 1757ZB

We are generating data at a faster rate than
our ability to analyze, understand, transmit,
secure and reconstruct in real-time

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Source: IDC Global DataSphere, May 2020

Source: R. Koduri, Intel, Hot Chips 2020



Evolution of Market Drivers
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Distributed Compute Era

Hyper-scale Data Regional DC/ Cloudified MicroData  Access Intelligent
Center Hybrid cloud WAN Center Points agents

l Cloud I Network I Edge

2000's-2010’s Bringing Data to the Compute

2020's > Bringing Compute to the Data

Distributed connected compute brings compute to data and adds QoS and Security to data lifecycle

Source: M.Mayberry, Intel, VLSI 2020




Edge Al Device Trajectory
>350 Billion AloT (Al+loT) Devices in Year 2030

Worldwide Devices Global Internet Traffic

26% CAGR
2017-2022

Billion Devices
Exabytes / Month
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Source: K-H Loh, MediaTek, ISSCC, 2020



Compute Barriers: Complexity and Cost

@ The curse of Moore’s Law The Ninja Gap
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Increasing cost of HW design and verification Increasing programming complexity

Source: M.Mayberry, Intel, VLSI 2020



Data Server Performance Evolution

Server 2P SpecintRate Over Time

Mar-09 Apr-10 May-11 Jun-12 Jul-13 Aug-14 Sep-15 Oct-16 Dec-17 Jan-19 Feb-20 Mar-21 Apr-22

«+++ Doubling every 2.4 years SpecintRate

Source: L. Su AMD, ISSCC 2023



Graphical Processor (GPU) Performance Evolution

GPU Single Precision FLOPs Over Time
100,000 GF
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Source: L. Su AMD, ISSCC 2023



Supercomputer Performance Evolution
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Performance/Power Consumption Evolution

Green500 Supercomputer GFLOPs/Watt and Projection
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Source: L. Su AMD, ISSCC 2023



ULSI Technology Miniaturization
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Source: L. Su AMD, ISSCC 2023



Miniaturization Scale
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Source: P. Wong, Stanford/tsmc, Hot Chips 2019




Key Barriers: Complexity and Costs

@ The curse of Moore’s Law The Ninja Gap
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Solution: Massively Parallel Architecture
NVIDIA: A100 Chip

54 Billion Transistors in 7nm
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Source: J. Choquette, NVIDIA, Hot Chips,2020



Solution: Wafer Scale Integration?

Cerebras Wafer-Scale Engine
(WSE-2)

The Largest Chip in the World

850,000 cores optimized for sparse linear algebra
46,225 mm? silicon

2.6 trillion transistors

40 gigabytes of on-chip memory

20 PByte/s memory bandwidth

220 Pbit/s fabric bandwidth

7nm process technology

56x larger than largest GPU




Outline

¢ Current technology landscape and future growth directions

> 3D device structures from FinFET to nanosheet architectures
and beyond Silicon

¢ 3D heterogeneous integration: chiplets and neuromorphic
computing

¢ Electrical car driven SiC market explosion



Potential roadmap extension
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Disruptive architecture innovations
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Next step in differentiation: backside power delivery

2021 - Intel announces Backside PDN in 20A node sign al Front Side BEOL
connections
above pFET nFET

FETs — gy

power delivery | I
below o

VDD

after US2018/0145030 I

* backside power delivery allows next-level
differentiation of signal wiring and power delivery
=» big Integration challenge

Source: imec, 2023
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Quantum
norphic

es
ting

2D materiales »

log2(performance)

Beyond
Si CMOS scaling
with 2D materials

Scaling

w
Highk-/ hit
Gl architectures

2022 2023 2024 2025 2026 2027 2028 2029
Year of 1%t introduction

2030 2031 2032 2033



Outline

¢ Current technology landscape and future growth directions

*¢* 3D device structures from FinFET to nanosheet architectures
and beyond Silicon

» 3D heterogeneous integration: chiplets and neuromorphic
computing

¢ Electrical car driven SiC market explosion



System Performance Roofline Plot
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How Do We further Increase System Efficiency?

Packaging Interconnect Density

= High bandwidth between
chiplets enables
architectural performance
gains while lowering total
communication energy
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> 2.5 D & 3D Integration
» More than 90% of Power Consumption for Processor-Memory
Communication
» Near Memory and In-Memory Computing next on roadmap



Energy Benefits of 2.5D & 3D Integration

DRAM layers

Memory layers
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Silicon Interposer
Integration Enables Higher Bandwidth at Lower Power

DIMMS 2.5D Micro-bumps (HBM) 3D Hybrid Bond

~12 ~3.5 ~0.2

Amount of energy to send data from the processor to DRAM
> 2D -12pl/bit 2.5D - 3.5 pJ/bit 3D - .2pJ/bit




Additional Benefits to Chiplets: Higher Yield

Functional SoCs

e: S. Naffziger , AMD, VLSI Technology Symposium, 2020

Sourc



3D Integration Examples
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3D Integration Roadmap

The 3D Interconnect Technology Landscape

: 3D-SIP 3D-SIC 3D-SOC 3D-IC
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3D Landscape and 3D Interconnect Roadmap
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2022 CAPEX HIGHLIGHTS FOR ADVANCED PACKAGING PLAYERS

Estimated 2022 CapEx spending for Packaging activity by
top players [M US$]

Estimated 2022 packaging CapEx split (top players)

*Intel 54750

*TSMC $4 000

ASE $2 000

*Samsung 31 650

Amkor $950
Tongfu

3%
JCET $650 PTI
4%

PTI $612 JCET

4%

Tongfu 440 Amkor
6% *Samsung

. 1%
FIntel, TSMC and Samsung advanced packaging CapEx were estimated based on earnings calls statements and

recent announcements of investments, since packaging is not their main business focus
All CapEx data s estimated based on information gathered during Q1 2022



Memory/Storage Hierarchy: New Memory Needs
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Source: R. Koduri, Intel, Hot Chips 2020



Emerging Non-Volatile Memories

Random access, non-volatile, no erase before write, on-chip integration
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Net Steps on Roadmap: Neuromorphic Computing

High Density On-Chip
N3XT SYStem Nonvolatile Memory
High Speed On-Chip
Nonvolatile Memory
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Goal: Approach human brain neuron density with acceptable power consumption

Source: P. Wong, Stanford/tsmc, Hot Chips 2019




Conclusions: System Efficiency Roadmap

Efficiency Roadmap to Zettascale

100000
Target is >10,000 GF/Watt for <=100MW Zettascale
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Zettascale at 2022  Process technology Architectural Chiplets, memory and
Exascale Efficiency optimizations interconnect

Dominant Directions:

» Further technological advances: device architectures, backside power delivery, emerging memories, 2D
material, Carbon Nanotubes

» System Architecture Optimization (software-hardware co-design, neuromorphic computing)

> 3D Heterogeneous Integration including Photonics
Source: L. Su AMD, ISSCC 2023



Outline

¢ Current technology landscape and future growth directions

*¢* 3D device structures from FinFET to nanosheet architectures
and beyond Silicon

¢ 3D heterogeneous integration: chiplets and neuromorphic
computing

» Electrical car driven SiC market explosion



Motivation for SiC
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SiC vs. GaN
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SiC Crystal Growth

* Substrate: Raw, Epi-ready wafer,
ready to enter to epitaxy reactor.

* Epiwafer: Front End-ready wafer.

SiC substrate
SiC substrate

() (b) r
Temp. [N = A _

Seed holding shaft

low

Graphite crucible

“ ~\\% SiC crystal

b Si-Cr based solvent
Induction coils

A

PPPRE

high /‘—‘ Thermal insulator

oa

SiC Growth - Source: CS Website

» SiC Boule Growth Process: | e eniwatir
» Very slow (> 2 weeks)
» Crystal defects are still a problem



SOITEC Revolutionary Breakthrough

SmartSiC™, an adaptation of Smart Cut™ process to SiC

Donor wafer Handle wafer
(Prime monocrystalline SiC or Epi layer) (Ultra high conductivity polycrystalline SiC)

>~ SiC ’ 2. Surface prep g - -
sic ’
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SmartSiC™

» Adaptation of SmartCut to SiC wafer production:
» The single crystal SiC donor wafer can be reused up to 20 times



SiC Wafer Size Evolution
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» 200 mm wafers are a new standard R

» Vertical integration is a new trend
» From SiC boule growth to the SiC Module Production (e.g., ST)



SiC Market Growth Prediction
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» Fastest growth rate in semiconductor industry:
» Demand driven by Battery Electric Vehicles



SiC Market Size Explosion

Industrial and high- ﬁii%
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» New government regulations to reduce CO2 emissions:
» By 2035 the demand for 200mm SiC wafers will exceed the current
worldwide production of all TSMC fabs
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