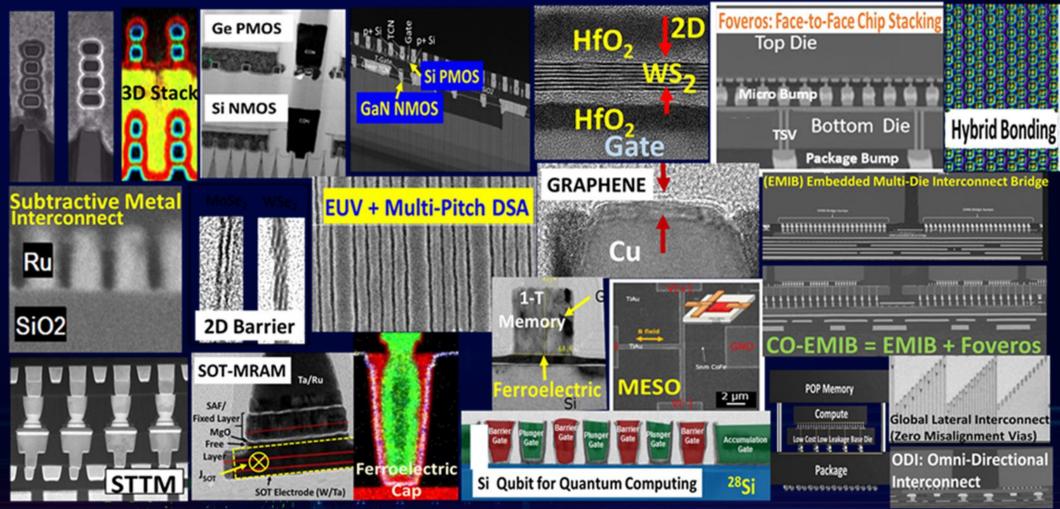
ELTE Conference 2023 in Poland

Exploring Wide Bandgap Semiconductor Research Collaboration Opportunities in Poland

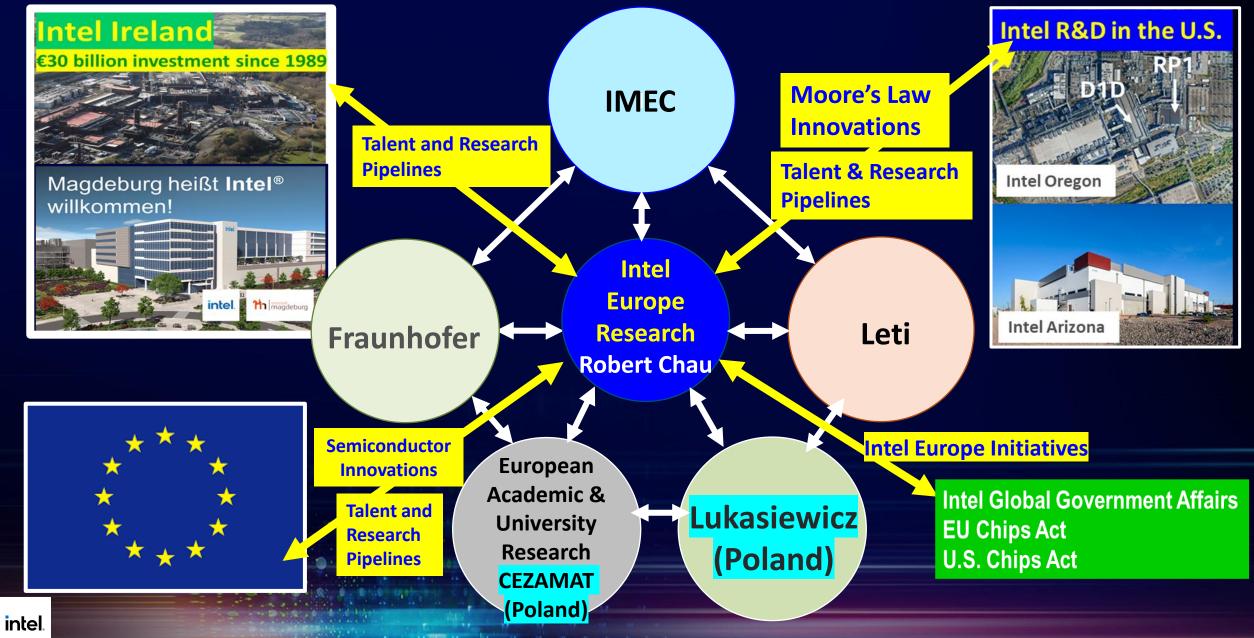
Dr. Robert Chau


Intel Senior Fellow, Intel Technology Development
Director of Intel Europe Research
IEEE Fellow, Member of U.S. National Academy of Engineering

April 19, 2023

Robert Chau, Director of Intel Europe Research

- 35 years with Intel.
- Intel Senior Fellow since 2005.
- General Manager of Intel Components Research organization 2014-2022.
- Director of Intel Europe Research 2022 present (relocated from U.S. to Brussels in 2022).
- 2012 IEEE Jun-ichi Nishizawa Medal for Strained-Si and High-k/Metal-Gate technologies.
- 2015 Intel Inventor of the Year Award for Intel's FinFET technology.
- Holds >480 U.S. patents.
- IEEE Fellow.
- Elected Member, U.S. National Academy of Engineering.


Microelectronics Advancement Requires Semiconductor and Packaging R&D Moore's Law Scaling + New Functions

Transistor, Interconnect, Patterning, Memory, Packaging, 3D Integration, New Materials, New Functions

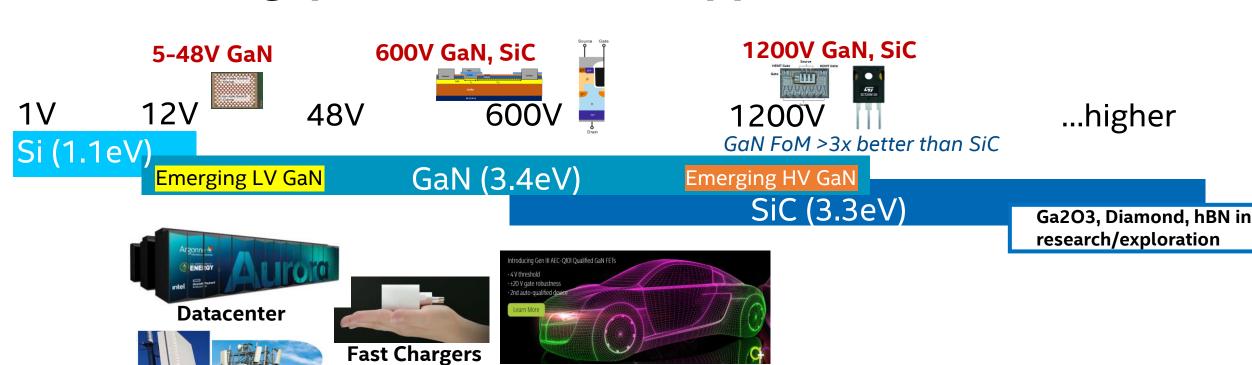
Source: Robert Chau, Intel, IEDM 2019 Keynote

Intel Europe Research (Robert Chau): Intel-European RTOs R&D collaborations in 1) accelerating semiconductor process and packaging R&D advancement in Europe and 2) driving Moore's Law and beyond.

Intel Europe Research and Poland RTOs

- Intel established its presence in Poland 24 years ago.
- Intel has established a large software R&D center in Gdansk with ~2400 employees.
- Intel Europe Research (Robert Chau) visited CEZAMAT in Oct 2022 and gave keynote speech at the 2022/2023 academic year inauguration:

- Piotr Dardzinski (former Lukasiewicz president) and Robert Chau (Intel) met in Brussels Nov 2022 to discuss R&D landscapes in Poland and Intel-Lukasiewicz research collaboration opportunities.
- Intel's Robert Chau and IMEC's Luc Van den hove (CEO) co-hosted Lukasiewicz at IMEC Leuven in Feb 2023 to discuss joint Intel/Lukasiewicz/IMEC research collaboration opportunities.
- Lukasiewicz (Jakub Kaczmarski) and Intel (Robert Chau) are organizing a joint technical workshop in Poland in 2023 on wide bandgap semiconductors R&D (contact: Jakub Kaczmarski @Lukasiewicz)
 - **❖** To stimulate discussions on wide bandgap semiconductors and explore joint R&D opportunities


Wide Bandgap Semiconductors for RF and Power Applications

	Ge	Si	Sic	GaN (AlGaN)	Diamond	hBN
Eg (eV)	0.67	1.1	3.26	3.39	5.45	6.4
electron mobility (cm2/Vs)	3900	1350	700	1900	1900	200
hole mobility (cm2/Vs)	1900	450	20	20	2000	?
electron charge density (e20 cm ⁻²)	>10	>10	0.5	5	~1	?
v _{peak} (10^7 cm/s)	1	0.7	2	2.5	2.7	?
E _{Critical} (MV/cm)	0.15	0.3	3	3.3	5.6	15
Thermal conductivity (W/cm K)	0.6	1.5	3.3-4.5	2	20	21
RF Johnson's FOM = $E_{Critical} * v_{peak}$	0.7	1.0	29	39	72	?
Power Baliga's FOM = μ_n * $E_{Critical}$ ^3	0.5	1.0	443	1441	4460	5698

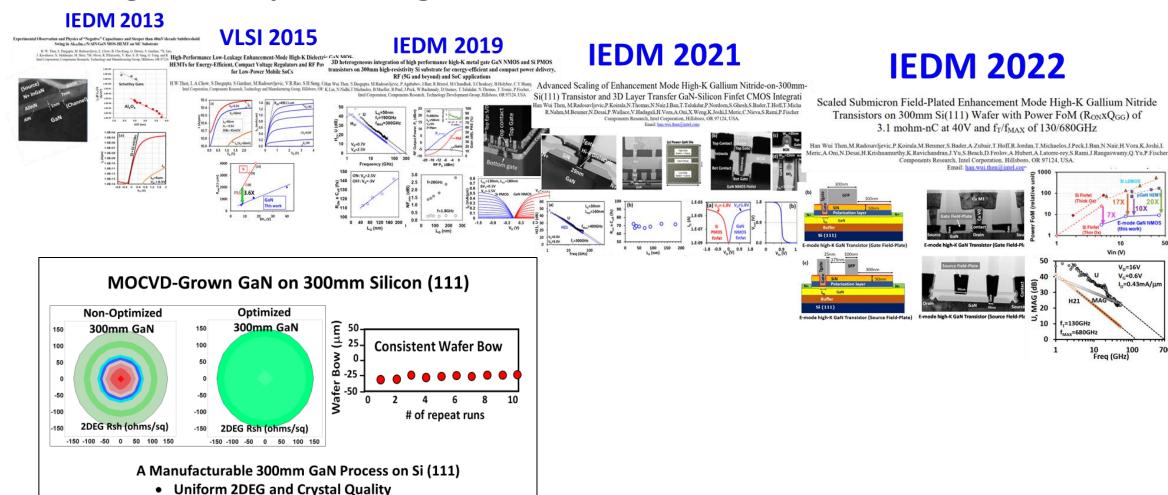
SiC most mature; GaN higher performance (higher mobility, higher charge density and higher FOMs) than SiC but requires more R&D; Diamond and hBN in research/exploration phase

Source: Han Wui Then, Intel, IEDM 2019, 2012, 2022.

Wide Bandgap Semiconductor Opportunities

Automotive

- RF Base Station
- 5G/6G Small Cells
- Mobile Handsets


Defense, Space

AES' PS6120 Aerospace

- SiC most mature and dominates at >1000V (but lower performance than GaN)
- GaN opportunities in < ~600V (higher performance than SiC) but requires more R&D.
- More discussions at the upcoming 2023 Lukasiewicz-Intel technical WS in Poland (contact: Jakub Kaczmarski @Lukasiewicz)

Intel's GaN research has been focusing on low-voltage (5-48V) applications and large-wafer processing

V₆=0.6V

I_n=0.43mA/μπ

Source: Robert Chau, Intel, IEDM 2019 Keynote Han Wui Then, Intel, IEDM 2019, 2021, 2022

Consistent Wafer Bow

Closing Remarks

Strong research collaborations between Intel Europe Research, Poland's RTOs (Lukasiewicz) (Lukasiewi

Joint Lukasiewicz-Intel 2023 technical workshop in Poland on wide band-gap semiconductors
 R&D (contact: Jakub Kaczmarski @Lukasiewicz)

Centre for Advanced
Materials and Technologies
CI:ZAMAT

Wrocław University of Science and Technology